Invariant Mean Value Property and Harmonic Functions

نویسندگان

  • Jinman Kim
  • M. W. Wong
چکیده

We give conditions on the functions σ and u on R such that if u is given by the convolution of σ and u, then u is harmonic on R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariants of Finite Reflection Groups and the Mean Value Problem for Polytopes

Let P be an n-dimensional polytope admitting a finite reflection group G as its symmetry group. Consider the set ( P(k) of all continuous functions on Rn satisfying the mean value property with respect to the k-skeleton P(k) of P, as well as the set ( G of all G-harmonic functions. Then a necessary and sufficient condition for the equality ( P(k) ̄( G is given in terms of a distinguished invaria...

متن کامل

A Mean Value Property of Harmonic Functions on the Interior of a Hyperbola

We establish a mean value property for harmonic functions on the interior of a hyperbola. This property connects their boundary values with the interior ones on the axis of the hyperbola from the focus to infinity.

متن کامل

A Mean Value Property of Harmonic Functions on Prolate Ellipsoids of Revolution

We establish a mean value property for harmonic functions on the interior of a prolate ellipsoid of revolution. This property connects their boundary values with those on the interfocal segment.

متن کامل

Mean-value property on manifolds with minimal horospheres

Let (M, g) be a non-compact and complete Riemannian manifold with minimal horospheres and infinite injectivity radius. We prove that bounded functions on (M, g) satisfying the mean-value property are constant. We extend thus a result of the authors in [6] where they proved a similar result for bounded harmonic functions on harmonic manifolds with minimal horospheres. MSC 2000: 53C21 , 53C25.

متن کامل

Median Values, 1-harmonic Functions, and Functions of Least Gradient

Motivated by the mean value property of harmonic functions, we introduce the local and global median value properties for continuous functions of two variables. We show that the Dirichlet problem associated with the local median value property is either easy or impossible to solve, and we prove that continuous functions with this property are 1-harmonic in the viscosity sense. We then close wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005